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Abstract

We report an evidence that self-similarity and anomalous scalings co-
exist in a turbulent medium, particularly in fluctuations of the magnetic
field flux density in magnetized plasma of the solar photosphere. The
structure function scaling exponents in the inertial range have been ana-
lyzed for fluctuations grouped according to the sign of the path-dependent
stochastic entropy production. It is found that the scaling exponents for
fluctuations with the positive entropy production follow the phenological
linear dependence for the magnetohydrodynamic turbulence. For fluctu-
ations with the negative entropy production, the scaling is anomalous.

In the lower solar atmosphere (photosphere), the evolution of magnetic fields
is influenced by turbulent magnetoconvective motions of plasma, especially in
regions with weak fields (≤ 0.1 Mx m−2) of the so-called ”quiet Sun”, i.e. away
from pores, sunspots, and their groups (active regions), where stronger mag-
netic fields suppress convective motions. The quiet Sun line-of-sight magnetic
flux density (MFD) Bz is observed as a rapidly evolving, spatially intermittent
(fractal) quantity in magnetic field maps (magnetograms) [7, 6, 36, 17, 9]. Pho-
tospheric magnetograms (Fig. 1) are recorded by space missions with a high
cadence during several 11-year solar cycles. The range of physical parameters
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in the solar atmosphere provides a unique laboratory for unprecedented contin-
uous high spatial resolution studies of dynamic magnetic phenomena [31]. In
this Letter, we report a first empirical evidence for a dual character of the scal-
ing law in temporal fluctuations of Bz(t) when their statistical realizations are
analysed separately according to the sign of the stochastic entropy production.

We employ an uninterrupted observation of the quiet Sun at the solar disk
center obtained by the Helioseismic and Magnetic Imager (HMI) on board the
Solar Dynamics Observatory (SDO) space mission [29, 30]. The analyzed time-
series consists of 51, 782 magnetograms in the Fe I 617.3 nm line from 2019 De-
cember 11, 00:00:22 UT to 2020 January 06, 23:58:07 UT, with the instrument-
fixed cadence ∆t = 45 s. This is exactly 27 days, which is somewhat longer than
one synodic rotation period of 26.24 days.

The magnetogram series is considered pixel-wise as discrete, time-ordered
snapshots of magnetic flux evolution in the Eulerian frame of reference. In this
context, every pixel as a probe in the field of view (FoV) provides a finite-length
random realization of MFD fluctuations (also called trajectory or path)

Bz(t) :=
{
Bz(t1), Bz(t1 +∆t), . . . , Bz(t1 + n∆t)

}
(1)

=
{
b1, b2, . . . , bn

}
= {bt}, t ∈ [1, n],

where t is the local time index starting at the local origin t1, n is the length
of the trajectory. The trajectory is a set of identically distributed, signed, non-
Gaussian, random variables; sign of bt designates polarity of Bz(t) at a given
time instance, and n is the exponentially distributed random number. At a
given pixel, the total number of trajectories {bt} is arbitrary. It depends on:
the overall observation time, a particular solar magnetic field topology within
FoV, and the noise cutoff. Statistical properties of trajectories are assumed
to be homogeneous in space for the quiet Sun, at least with the HMI spatio-
temporal resolution 1. Hence, trajectories of different pixels contribute to the
overall statistics equally.

The nature of Bz fluctuations enables analysis of fluctuations including a
measure of their irreversibility. Namely, ∆t-transitions in {bt} obey Markov
property [12], and so allow computing trajectory-dependent (total) stochastic
entropy production

∆sT({bt}) = ln

[
pn (b1, b2, · · · , bn)
pn (bn, · · · , b2, b1)

]
(2)

= ln

[
p(b1)

p(bn)

n−1∏
k=1

p(bk+1|bk)
p(bk|bk+1)

]
, (3)

where p, pn and p(bj |bi) are respectively the marginal, n-joint and ∆t-step con-
ditional probability density functions (PDF). The random quantity ∆sT is the

1The empirical test of Markov property at a higher resolution in [12] revealed that granular
and intergranular Bz had, to some extent, different statistical properties, which were neglected
at that stage of the studies. More details of the relevant discrepancies were reported in [9].
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measure of irreversibility of the trajectory, and its PDF has an exact symmetry
relation, known as the detailed fluctuation theorem 2:

p(∆sT > 0)

p(∆sT < 0)
= e|∆sT|. (4)

That is, the total entropy consumption, ∆s−T ≡ ∆sT < 0, is exactly expo-
nentially less probable than the total entropy generation, ∆s+T ≡ ∆sT > 0, of
the same magnitude |∆sT|. Hereafter, the corresponding signs are placed as
superscripts in notations of estimated quantities. The detailed pixel calculus
and Markov property test for {bt} at a higher spatial resolution are described in
[12]. For HMI {bt}, properties of the regular Markov chains were considered in
[11], and the validity of the fluctuation theorems (including Eq. (4)) was shown
in [10].

Henceforth, in our investigation of scale invariance of Bz(t) fluctuations due
to turbulent origin, we take into account the sign of ∆sT, which defines two
disjoint sets {bt}±. The conventional method of studying manifestations of
scale invariance involves an analysis of signal’s self-similarity in terms of the
q-order structure functions (SF)

Sq(ℓ) ≡ ⟨|δℓBz(t)|q⟩ = ⟨|Bz(t+ ℓ)−Bz(t)|q⟩, (5)

where δℓ(·) is an increment of a turbulent quantity at two points of the flow at a
distance ℓ. The Taylor’s ”frozen turbulence” hypothesis connects temporal and
spatial scales in measurements, so scales in Eq.(5) are used in units of spatial
distance. The solar data we investigate do not resolve all vector components
of the observable/inferred quantities like photospheric velocity and magnetic
fields, and consequently details of real flows are quite uncertain. However, we
assume that Taylor’s hypothesis is applicable for MFD of the quiet Sun [14]. For
the set of 1D trajectories of a finite length, SF are computed as the ensemble
average, and ℓ is expressed in units of the sampling interval ∆t.

The phenomelogical theory of turbulence establishes fundamental scaling
relations for observable quantities, and hence defines power-law dependencies
between SF. The Kolmogorov phenomenology [21] of the fully developed hydro-
dynamic (HD) turbulence at a high Reynolds number R = vℓ0/ν predicts the
scaling law in the inertial range λ ≪ ℓ ≪ ℓ0:

δℓv ∼ ε
1
3 ℓ

1
3 , (6)

where v is the velocity, ε is the average energy dissipation rate, ν is the viscosity,
and ℓ0 and λ are the integral and dissipation scales, respectively.

Turbulence of a magnetized plasma is described in the framework of magne-
tohydrodynamics (MHD). The corresponding Iroshnikov-Kraichnan phenomenol-
ogy [16, 22] includes the Alfvén wave effect of coupling between velocity and
magnetic field fluctuations on small-scales by the integral-scale magnetic field

2For introduction and review see, for example: [4, 15, 24, 18, 32, 19, 33]
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B0 [3, 28]. At a high magnetic Reynolds number Rm = vAl0/η, the self-similar
scaling exponents are

δℓv ∼ δℓB ∼ [εvA]
1
4 ℓ

1
4 , (7)

where η is the magnetic diffusivity, vA ≡ B0(4πρ)
− 1

2 is the Alfvén velocity in
B0, ρ is the mass density, and ℓ0 = v3Aε

−1.
In terms of SF, the self-similar (linear) scalings in Eqs. (6-7) read

Sq(ℓ) ∼ ℓξ(q), ξ(q) =
q

m
, (8)

with m = 3 for HD and m = 4 for MHD turbulence.
To cope with experimental limitations and irregularities of flows which hinder

the analysis of scaling in Sq(ℓ), the concept of the Extended Self-Similarity
(ESS) was proposed in Refs. [2, 1]. In essence, ESS is a set of the functional
dependencies of SF of any order on SF of the order for which ξ(q) = 1. Hence,
for the case of MHD turbulence we focus on ESS with the relative exponents ξ4

Sq(ℓ) ∼ [S4(ℓ)]
ξ4(q) , ξ4(q) =

ξ(q)

ξ(4)
. (9)

The linear scalings in Eq. (8) are violated by spatial inhomogeneities of the
dissipation on small scales, as said by intermittency. Thus, the scaling exponents
(anomalously) deviate from the exact linear relations, as has become evident
from extensive experimental and numerical studies [8]. Models for intermittency
differ by assumptions about statistical properties of the energy dissipation rate ε,
such as log-normal [20], multifractal [25], and log-Poisson [35, 34]. The latter was
revealed for the solar wind MHD turbulence [13, 26] and applied for photospheric
flows [5]. The ”standard model” of Ref.[26] as the non-parametric version of the
log-Poisson model for MHD turbulence

ξ4(q) = q/8 + 1− (1/2)q/4 (10)

is used as a reference for anomalous scaling in the results presented below.
In Fig. 2, the SF scalings are shown according to Eq. (9) being computed

separately for two sets {bt}±. The discrepancy in slopes with respect to sign of
∆sT is clearly seen, especially for higher orders. Following ideas from Ref. [37],
the inertial range is defined as the range in which Kolmogorov’s 4

5 law S3(ℓ) =
− 4

5εℓ holds. For our data, we found the inertial range to be from 15∆t to 19∆t.
The range boundaries were modified by ±∆t, to compensate for a rather

coarse sampling rate ∆t, because linear fits showed substantial variations with
range boundaries. This modification also helps to improve statistics of fits.
Therefore, an SF scaling (Eq. 9) in the inertial range is estimated by the set of
independent linear fits within the extended inertial range [15∆t±∆t, 19∆t±∆t].
The ultimate value of the scaling exponent ξ4 is then computed as the weighted
mean of 9 exponents for every combination of the inertial range boundary vari-
ations given by (0,±1)∆t.

This procedure was applied to three groups of fluctuations: {bt}± and their
joint data set. The result is shown in Fig. 3. Statistical robustness of the result
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is highlighted by the 99, 99% confidence level computed by the χ2 minimization.
Errors of the means are smaller than symbols and not shown.

Summarizing, an anomalous scaling is the intrinsic property of the MFD
fluctuations in the quiet Sun (diamonds in Fig. 3). The main results is the
statistically significant difference between ξ+(q) and ξ−(q). The former ex-
hibits scaling exponents rather distinctly following the linear dependence q

4 , in
accordance with the Iroshnikov-Kraichnan phenomenology. Contrastly, fluctu-
ations along ∆s−T -trajectories have anomalous scaling exponents, and the curve
of ξ−(q) resembles the MHD log-Poisson model (Eq. 10). However, we note that
models describing curves of ξ(q)− and ξ(q) are out of the scope of the present
Letter.

Following the arguments of She and Leveque [35], one can interpret our find-
ing that entropy consuming fluctuations could be related to entropy (energy)
sinks which support building up of coherent structures at larger scales due to
correlations induced by intermittency. Correspondingly, entropy generating fluc-
tuations are related to dissipation processes according to the phenomenological
cascade model.

To conclude, splitting measurements according to the sign of the entropy pro-
duction allows detecting an unexpected coexistence of self-similar and anoma-
lous scalings in the inertial range of turbulent small-scale photospheric magnetic
fields on the Sun. Future numerical and experimental/observational applica-
tions of the method proposed in this Letter may advance understanding of the
self-similarity in turbulent phenomena.

We thank Petri Käapylä for stimulating discussions. Solar Dynamics Obser-
vatory (SDO) is a mission for NASA’s Living With a Star (LWS) program.
The Helioseismic and Magnetic Imager (HMI) data were provided by the Joint
Science Operation Center (JSOC).
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Figure 1: Top panel: the first magnetogram in the analyzed time-series with
the FoV limited to 2002 pixels. The spatial sampling on the solar surface is
≈ 380 km = 0.5 arcsec/pixel. The FoV is chosen to minimize Bz projection
effects, spatial inhomogeneity of the noise, and other instrumental effects, as
well as the solar differential rotation. Bottom panel: the same as above with
the applied noise threshold cutoff of 3σ = 3 × 10.3 × 10−4 Mx m−2 [23]. The
rounded structure of MFD concentrations in the center (approx. tens Mm scale)
outlines supergranule boundaries, the so-called magnetic network [27]. The data
analyzed here consist of 3, 728, 333 stochastic trajectories from which 55% are
trajectories with ∆s+T .
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Figure 2: Normalized structure functions Sq of the order up to q = 13 are
shown as functions of S4. Dashed lines: structure functions for ∆s+T -trajectories.
Solid lines: structure functions for ∆s−T -trajectories. For clarity, functions are
bounded by the upper limit of the inertial range.
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Figure 3: The relative scaling exponents ξ4 as functions of SF order q for sets
of ∆s+T -trajectories (squares), ∆s−T -trajectories (circles), and the joint data set
(diamonds). Bars and shadowed regions are the 99, 99% confidence intervals
computed for χ2 merit functional. Lines are the model values with the MHD
linear scaling (solid) and the anomalous scaling according to Eq. (10) (dashed).
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